2023 11thqbio session2

From Japanese society for quantitative biology
Revision as of 12:10, 7 December 2023 by Ksugimura (talk | contribs) (Created page with "='''セッション2「生命の始まりを定量する」''' = 1/6 15:45-17:15 <br> Chair: 未定 ==15:45-16:15 生命の起源を追体験する== *水内 良 (京都...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

セッション2「生命の始まりを定量する」

1/6 15:45-17:15
Chair: 未定

15:45-16:15 生命の起源を追体験する

  • 水内 良 (京都大学)
  • 要旨:原始生命は約40億年前にRNAなどの単純な分子の自己複製体として誕生した後、進化によって徐々に複雑化してきたと考えられている。この観測不能な生命の起源過程を理解するため、私たちは様々な原始複製体の実験モデルを構築し[1–4]、実際に進化させることで、ありえた道筋を直接的に調べている。本講演では特に、少数のRNAとタンパク質を組み合わせて構築したRNA複製システムの進化に関する研究[3–5]を中心に、最新の成果を紹介したい。本システムは複製酵素をコードしたRNAゲノムと無細胞翻訳系で構成され、RNAが複製酵素の翻訳を介して自己複製するだけの原始的なシステムである。本システムを細胞を模した油中水滴に封入し、一連の実験サイクル (培養、希釈、栄養供給) を繰り返すと、RNAが複製し続け、突然変異が生じて自発的に進化する。近年、RNA複製システムを長期的に (約600世代) 進化させたところ、最初は1種類の複製体であったRNAは5種類の異なる性質をもつRNAに分化し、それらが互いに複製し合うネットワークへと複雑化することを見出した[3]。また生命の誕生には様々な機能の出現が必要であり、全く新しい機能が生まれる過程は未だ不明であるが、人工的に新機能を付与することはできている。例えば複製を担うRNAの他に代謝を担うRNAを導入して進化させたところ、それらの協力関係が強化された[4]。さらに近年、この進化を継続したところ、2種類のRNAが複製も代謝も可能な一本の長いRNAへと繋がり、より複雑なシステムへと進化した[5]。本講演ではこのように実験室で生命の起源にありえた過程を追体験する試みについて議論したい。

16:15-16:45 1細胞全ゲノムDNA複製解析が見出したマウス初期胚のDNA複製制御様式の変化

  • 平谷 伊智朗 (理研)
  • 要旨:哺乳類のゲノムDNA複製はメガベース(Mb)単位の複製ドメインレベルで制御されている。哺乳類の体細胞では、S期前半複製ドメインはユークロマチンであるAコンパートメントと、S期後半複製ドメインはヘテロクロマチンであるBコンパートメントとよい一致を示す。ゆえに、複製タイミング制御を理解することは、複製制御のみならず、Hi-C(high-throughput chromosome conformation capture)解析によって見出されるA/Bコンパートメント構造をはじめとするゲノム三次元構造制御の理解にもつながると考えられる。今回、我々は、胚発生過程におけるゲノムDNA複製制御様式を調べるため、着床前マウス初期胚を用いて1細胞全ゲノムDNA複製(scRepli-seq)解析を行った。その結果、1、2細胞期胚のゲノムDNA複製が体細胞とは全く異なる形で進行することを見出した。この時期にはMb単位の複製タイミングドメインは存在せず、複製フォークは極端に遅く、S期の経過と共にゲノム全域にわたってコピー数が徐々にかつ均一に倍化していく様子が観察されたのである。この状況は4細胞期に突如切り替わり、S期前半およびS期後半複製ドメインが現れて体細胞型の複製タイミング制御が開始し、これと連動して核内空間においてS期前半および後半複製領域が区画化(=A/Bコンパートメントが形成)された。しかし、予想に反し、4細胞期胚の複製フォーク速度は依然として体細胞や8細胞期に比べてはるかに遅いままであり、フォーク速度制御は複製タイミング制御の急激な出現と連動していなかった。つまり、受精後の胚発生に伴う初期胚型から体細胞型への複製制御の切り替わりの際には、Mbスケールの複製タイミング制御と個々のDNA複製開始複合体制御の間で一時的に協調性が失われていることが明らかになった。さらに、4細胞期の分裂期には未複製ゲノム領域に起因すると思われる染色体分配異常が高頻度で観察された。以上の結果から、胚性ゲノム活性化の時期には様々な階層でゲノムに大きな変化が生じるが、これらの変化は必ずしも協調的に進行している訳ではなく、マウス初期胚では階層間の協調性の一時的な低下がゲノム不安定化を引き起こしていることが示唆された。

16:45-17:15 力学と化学の連携による細胞パターン形成

  • 茂木 文夫 (北海道大学)
  • 要旨:生物が卵から個体に至る過程では、様々な細胞が固有の運命・形・機能を獲得する。この形態形成では、細胞が「機械的な力」を感知・応答する現象が重要であることが近年発見された。力作用は、細胞内で不均一に分布し一見不規則な変動を示すが、最終的に細胞に規則的なパターンを確立させる。力作用が細胞内化学反応と連携して細胞の運命・形・機能を制御するメカニズムを解明する試みとして、線虫初期発生をモデル系とした一連の研究を紹介する。受精卵は、精子由来因子によって細胞内力作用を対称から非対称に転換し(文献1−3)、この力作用の非対称性が運命決定因子のパターン形成を誘導する(文献4−6)。本公演では更に、細胞間コミュニケーションを介した初期胚パターニングを解析する新規手法に関しても紹介することで、将来展望を議論したい。
  • 参考文献
    • [1] Nat. Cell. Biol. (2006) doi: 10.1038/ncb1459
    • [2] Nat. Cell Biol. (2011) doi: 10.1038/ncb2354
    • [3] Dev. Cell (2019) doi: 10.1016/j.devcel.2019.05.010.
    • [4] Nat. Cell Biol. (2017) doi: 10.1038/ncb3577
    • [5] Nat. Chem. Biol. (2018) doi: 10.1038/s41589-018-0117-1
    • [6] Cell Rep. (2021) doi: 10.1016/j.celrep.2021.109326.


定量生物学の会 第十一回年会メインページへもどる